Linear Program Relaxation of Sparse Nonnegative Recovery in Compressive Sensing Microarrays
نویسندگان
چکیده
منابع مشابه
Linear Program Relaxation of Sparse Nonnegative Recovery in Compressive Sensing Microarrays
Compressive sensing microarrays (CSM) are DNA-based sensors that operate using group testing and compressive sensing principles. Mathematically, one can cast the CSM as sparse nonnegative recovery (SNR) which is to find the sparsest solutions subjected to an underdetermined system of linear equations and nonnegative restriction. In this paper, we discuss the l₁ relaxation of the SNR. By definin...
متن کاملCompressive Sensing DNA Microarrays
Compressive sensing microarrays (CSMs) are DNA-based sensors that operate using group testing and compressive sensing (CS) principles. In contrast to conventional DNA microarrays, in which each genetic sensor is designed to respond to a single target, in a CSM, each sensor responds to a set of targets. We study the problem of designing CSMs that simultaneously account for both the constraints f...
متن کاملAnti-measurement Matrix Uncertainty Sparse Signal Recovery for Compressive Sensing
Compressive sensing (CS) is a technique for estimating a sparse signal from the random measurements and the measurement matrix. Traditional sparse signal recovery methods have seriously degeneration with the measurement matrix uncertainty (MMU). Here the MMU is modeled as a bounded additive error. An anti-uncertainty constraint in the form of a mixed 2 and 1 norm is deduced from the sparse ...
متن کاملHierarchical Recovery in Compressive Sensing
A combinatorial approach to compressive sensing based on a deterministic column replacement technique is proposed. Informally, it takes as input a pattern matrix and ingredient measurement matrices, and results in a larger measurement matrix by replacing elements of the pattern matrix with columns from the ingredient matrices. This hierarchical technique yields great flexibility in sparse signa...
متن کاملSparse Bayesian Learning in Compressive Sensing
Traditional Compressive Sensing (CS) recovery techniques resorts a dictionary matrix to recover a signal. The success of recovery heavily relies on finding a dictionary matrix in which the signal representation is sparse. Achieving a sparse representation does not only depend on the dictionary matrix, but also depends on the data. It is a challenging issue to find an optimal dictionary to recov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational and Mathematical Methods in Medicine
سال: 2012
ISSN: 1748-670X,1748-6718
DOI: 10.1155/2012/646045